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Chemoenzymatic Synthesis of Complex Peptide Molecules

Using Enzymes Derived from Specialized Metabolism

Kenichi Matsuda, Faculty of Pharmaceutical Sciences, Hokkaido University

Introduction

Natural product biosynthetic enzymes catalyze highly selective chemical reactions under mild biological conditions to
efficiently assemble complex molecules, providing valuable opportunities for the efficient synthesis of complex
molecules with minimal environmental costs. In this presentation, | will introduce the development of an efficient
chemoenzymatic approach for cyclic peptides using non-ribosomal peptide cyclization enzymes, as well as research on
peptide prenylation enzymes derived from cyanobacteria.

Chemoenzymatic Synthesis of Cyclic Peptides Using Non-Ribosomal Peptide
Cyclization Enzymes

Cyclic peptides represent an important drug modality capable of targeting intracellular protein-protein interactions that
have traditionally been considered difficult to address. Cyclization of the peptide backbone is a valuable modification that
potentially enhances target specificity, membrane permeability, and resistance to degradative enzymes. However, peptide
cyclization have remained challenging reaction and typically requires large quantities of organic solvents to suppress
competing intermolecular reactions. Furthermore, regioselective construction of cyclic structures necessitates protective
groups. Additional challenges include the requirement for stoichiometric amounts of expensive condensing agents and
the removal of stereoisomeric byproducts. In contrast, natural biosynthesis of cyclic peptides employs peptide cyclases
that efficiently catalyze regio-, chemo-, and stereoselective cyclization under mild conditions without protective groups.

The non-ribosomal peptides surugamides, produced by Streptomyces spp., feature cyclic structures formed not by
conventional thioesterase domains (TE) fused to synthetases, but by a novel independent peptide cyclization enzyme,
Surk ™2, While this enzyme shows no sequence similarity to existing peptide cyclization enzymes, it does share sequence
similarity with penicillin-binding proteins (PBPs) involved in peptide cross-linking during peptidoglycan biosynthesis.
Consequently, we have referred this enzyme family as “penicillin-binding protein-type thioesterases (PBP-type TE)” "\ Surk
is a bifunctional enzyme simultaneously involved in the biosynthesis of two different cyclic peptides with varying chain
lengths and sequences, demonstrating tolerant substrate selectivity 4. The enzyme possesses a hydrophobic pocket
near its catalytic serine residue, allowing it to selectively accept and cyclize substrates with hydrophobic D-amino acid
residues at their C-terminus ™.

S-acetyl cysteine (SNAC) has traditionally been used as a low molecular pantetheine surrogate when reconstituting the
activity of non-ribosomal peptide cyclases in vitro; however, it remains extremely tedious to synthesize, with byproduct
removal requiring substantial effort, making large-scale or parallel multi-sample synthesis challenging. However, PBP-type
TEs exhibit tolerant selectivity toward leaving groups, accepting not only conventional thioesters (SNAC) but also
oxoesters “. We therefore developed a new substrate synthesis method that employs ethylene glycol as a leaving group,
which is pre-loaded on a solid phase before peptide elongation, thereby eliminating liquid-phase condensation steps that
generate byproducts ®. This improved the synthesis yield of enzyme substrates from 30% to over 80%. The resulting
peptide substrates are of high purity and can be directly cyclized by enzymatic reaction without LC purification,
significantly reducing time and effort leading up to the enzymatic reaction. SurE demonstrates extremely tolerant selectivity
toward substrate sequences and chain lengths, efficiently cyclizing sequences entirely unrelated to its natural biosynthetic
products, as well as substrates containing non-peptidic oligomers ®. Furthermore, the range of synthesizable cyclic peptide
sequences could be expanded through the utilization of homologous enzymes and rational enzyme modifications ®®. The
synthetic products were not limited to head-to-tail cyclic peptides where the backbone termini are linked; by designing
appropriate substrate sequences, bicyclic peptides 7 and lariat-type cyclic peptides could also be synthesized. The
chemoenzymatic synthesis method using ethylene glycol as a leaving group is also applicable to some conventional TEs .
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Arginine-N,N-bisprenyltransferases for Consecutive Guanidine-N-prenylation on
Peptides

Cyanobactin prenyltransferases, which catalyze peptide prenylation, combine strict selectivity for modification sites
with broad tolerance for remainder part of substrates, making them potentially useful as biocatalysts for site-selective
peptide modification. We previously identified Arg/\./NV-bisprenyltransferase AgcF, which selectively modifies Arg in
cyclic peptides ¥; however, its consecutive prenylation reaction mechanism remained unclear. In this study, we
discovered a new homologous enzyme, DciF. Through structural analysis, we elucidated the structural factors dictating
the number of prenylations. DciF can selectively modify Arg residues in various cyclic/linear peptides, suggesting its
utility as a peptide bisprenylation biocatalyst.
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